Basic methods for quantitative image analysis
Paul S Tofts

Brighton and Sussex Medical School, UK

http://paul-tofts-phd.org.uk/
p.s.tofts@bsms.ac.uk   full version of this note; this version December 19th 2006
This course has been given at ISMRM in 2005 and 2006, and will be given at ISMRM May 2007 in Berlin. See also qmri.org
1. Overview and concepts
a. On completion, you should be able to: 

i. Describe 5 basic principles of good methodology in qIA

ii. Describe 5 sources of variation in qIA and methods to reduce them

b. Image analysis and quantification.  Image analysis is near the end of the measurement process, and without attention to the whole, results may be almost meaningless. Hence concepts of quantification, qMR, are needed.

c. qMR uses the paradigm of a scientific instrument. Long history. Well worked out concepts (accuracy, precision, uncertainty etc). The ‘happy-snappy MRI camera’ evolves to measure clinically relevant biological quantities.  Expect the same performance as when measuring e.g. body height or weight. 

d. Applications are in diagnosis, monitoring disease progression, and measuring response to treatment (trials, and customised treatment).

e. Images are collected with various contrasts (weightings) e.g. T1 or D. From these, maps are calculated showing values of a MR parameter (e.g. T1 or ADC).

f. Partial volume effects (voxel too large or elongated) often prevent us measuring a pure tissue (e.g. grey matter). Use small isotropic voxels where possible (compromise with SNR).

g. Study design:

i. Beware ‘stamp collecting’; clarify objective and hypothesis from the start. Read the literature!

ii. Use interleaved controls in a serial study, to control for scanner drift.

iii. Talk to a statistician
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	Instrument sd=10; group separation barely achieved
	Instrument sd=3; good group separation
	Instrument sd=0.5; individual subjects diagnosed


Example of how good instrument performance can affect clinical possibilities

2. The measurement process - data collection

a. Awareness of data collection (+ sources of variation) guides study design, image analysis and interpretation, and may lead to re-design of data collection
b. Subject positioning
i. Inter-scan movement often corrected using spatial registration (more later)

ii. Intra-scan movement causes

1. artefacts (usually in phase encode direction)

2. loss of signal (to air – wind grey window down and look!).

c. Scanner Auto Pre Scan procedure

i. Set transmitter output

ii. Set receiver gain

iii. Set centre frequency

iv. Shim

v. Can be manually over-ridden for serial scans (e.g. dynamic Gd enhancement)

d. NMR signal is proportional

i.  to proton density (spins per ml)   AND

ii. 1/(absolute temperature). From refrigerator (278K) to brain (310K), signal decreases 10% (!)

e. static field B0 – local susceptibility gradients near air-tissue interfaces cause shift and dropout, especially in gradient echo and EPI.

f. Static field gradients  
i. larger values can overcome local susceptibility gradients.
ii. Eddy currents can distort diffusion imaging and spectroscopy
g. Radiofrequency transmit field B1 
i. B1 and flip angle (FA) errors are the largest source of error in qMR. Crucial in e.g. Magnetisation Transfer, T1 measurement.
ii. Absolute value is set by APS.
iii. RF nonuniformity causes B1 to vary with position

iv. B1(r) can be mapped; worst for small transmit/receive coil (e.g. head coil); best for body transmit coil. 

v. Residual nonuniformity caused by subject; increases with field (3T..).

h. Slice selection
i. In 2D sequences, FA varies across slice profile, and slice profile varies with position (if B1 is nonuniform). Can degrade quantification. Can be corrected using knowledge of selective pulse and B1(r)
ii. B1(r) mapping is a growing subject (later talk by Geoff Parker).

iii. 3D sequences preferred (harder broadly-selective RF pulse).

i. Receive sensitivity

i. Coil loading (depends on subject). Electrical losses reduce Q.

ii. Coil loading can in principle (usually) be found from the transmitter setting using the principle of reciprocity: 
(Receive sensitivity) x (transmitter output for a 900 pulse) = constant (independent of loading)
iii. Receiver gain (adjusted by APS). 
iv. Image noise – measure in surrounding air (sdair = 0.6 sdsubject). SNR can be increased (at expense of imaging time, spatial resolution, unwanted T1-weighting etc)

v. Receive nonuniformity 

1. can degrade qualitative appearance (close fitting coils for high SNR)

2. often does not degrade qMR, since ratios of images are used

3. exceptions: PD and spectroscopy (absolute signal is important).

4. Sometimes corrected in software: usually only qualitative

5. Can be corrected using phantom scan or B1 map (but…)

j. Image registration – often done

i. Serial studies – looking for subtle changes over time
ii. Subtraction (e.g. Gd) – subtle changes
iii. Group mapping – subtle differences between individual and a group
iv. See talk 3 - Mark Jenkinson

3. The measurement process - image analysis

a. Types of image analysis
i. Region of Interest (ROI)

1. simplest: locate in various parts of the body. 

2. measure mean value, sd and number of pixels (area in mm2)

3. Can be 2D (single slice) or 3D (VOI, several slices).

4. manual or semi-automatic generation.

5. Check adjacent slices for partial volume errors (if measuring mean)

6. Location of ROI is source of variation in repeats (especially near edges, and if defined manually). 

7. Many studies on intra-observer and inter-observer variation (within-observer vs between observer). E.g. Multiple Sclerosis(MS) (visible) lesion load. 

a. Re-analyse same image dataset. Analyse discrepancies, define rules.

b. Scan-rescan: more realistic. Includes variation from whole measurement process.

8. use an independent ‘structural  image’ to define ROI’s. If these are defined on parametric map (e.g.  MTR), then mean values of parameter can be biased.

ii. Histogram analysis

1. All voxels in a volume (e.g. whole brain or tumour) are counted, and a frequency distribution plotted.  MORE in NEXT SECTION.

2. Spatial discrimination lost; however very sensitive to subtle diffuse abnormality (e.g. Normal Appearing White Matter in MS).

iii. Voxel-based group mapping (VBGM)

1. ROI problem: where to place the ROI? Which location to test? Multiple comparisons, Bonferroni.

2. Histogram problem: spatial information lost. Abnormality may be localised (but where?)

3. VBGM: Every location (size about 1cm cubed) is tested for abnormality, without prior choices.

4. Images from a group of subjects are registered to a standard template (more later?)

5. Conceptually between ROI and histogram

b. Types of statistical analysis

i. Complex; often done badly. Talk to statisticians early on.

ii. Often the end point of a long study; get it right!

iii. Control for age and gender during recruitment and analysis (covariate)

iv. Inspect the data (scatter plots) 

v. Group comparisons

1. t-test (parametric data). 

2. Beware multiple comparisons (Bonferroni correction? Too harsh?)

3. Fishing expedition vs. hypothesis testing

4. give confidence limits as well as p-values. 
a. ‘no difference was found, although a previous study had shown one’  -  WHY?
b. ‘the 95%CI for the group difference was -0.5 to +2.5’

c. ‘in a previous study the 95%CI was 0.5 to 1.5 (better precision)  OR

d. ‘in a previous study the 95%CI was 4.5 to 7.5 (larger separation)  
vi. negative results (in group comparison)

1. there may be only a small between-group effect   OR

2. the within group-effect may be large (reduce it? e.g. age dependency) OR
3. the instrumental variation may be (unnecessarily) LARGE

4. thus better technique could change a negative result to positive. 

5. Analyse and quantify sources of variation
vii. false positive result
1. e.g. patients before a scanner upgrade, controls after (!)

viii. correlations

1. Widely used, but…

2. Correlating to a ‘gold standard’ e.g. clinical score, pathological score, soon uncovers corrosion. Between-rater disagreement. Relation of biology to clinical status?

3. Failure of a MR parameter to correlate with a clinical score does not imply it’s a ‘bad’ parameter. Correlation with biology (biopsy or post mortem samples) is ?more meaningful.

ix. Classification

1. Can individual subjects be well classified by a MR parameter?

2. More useful than group comparisons, if the parameter is specific and sensitive enough. Diagnosis, monitor treatment etc.

3. example from NPSLE and MTR histograms (Dehmeshki).

4. trade off sensitivity (no false negatives) vs. specificity (no false positives). Visualised with Receiver Operating Characteristic (ROC) curves.
4. Histograms

a. MR parameter measured over large volume (e.g. brain or white matter)

b. Frequency distribution 

c. very subtle diffuse changes can be detected – e.g. NAWM in MS
d. process includes:

i. MR parameter measurement – MR physics - elsewhere
ii. Image segmentation – talk 4 – Tim Cootes
iii. Histogram generation – examined in detail

e. Step 1:  despiking
i. raw image datasets are usually stored as integers, with sufficient resolution so that rounding errors do not contribute to image noise. 

ii. These are converted to floating point numbers. 

iii. Parameter (e.g. MTR or T1) is calculated

iv. Histogram spikes can be produced, arising from the discrete distribution in the raw image data.

v. Random noise (-0.5 to +0.5) added to raw images avoids this. 

f. Step 2: histogram architecture
i. Define bin width

1. too large and peak structure is lost; features of peak height and location affected.

2. too small and too much noise (though best to use small bin and smooth)

ii. define bin borders

1. e.g. bin at 30 could be 29.51 to 30.49 or 30.00 to 30.99

2. beware parameter value falling on bin interface

3. small bins reduce this problem

g. step 3: smoothing
i. e.g. median smoothing of small bins

h. step 4: normalisation
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‘partial normalisation’ divide by total no. of voxels, to account for e.g. varying brain sizes

ii. ‘full normalisation’ divide by bin width (and multiply by 100%)

1. gives peak height independent of bin width

2. units are then %vol per [MR parameter unit] e.g. %vol/ms for T1
3. total area under histogram curve is 100%

i. step 5: feature extraction
i. peak height (decreases if histogram broadens)

ii. peak location

iii. alternatively, fit function to peak(s) to determine height and location

iv. percentiles  (i.e. area in tails), e.g. 25th percentile

v. mean value in segmented volume (no need for a histogram!)

vi. Principle Component Analysis and Linear Discriminant Analysis

j. EXAMPLE of partial and full-normalisation
5. Quality assurance

a. QA of MR measurements can establish

i. short-term stability 

ii. accuracy (closeness to truth)

iii. long term stability (for long serial studies)

b. QA can use normal controls

i. + stable

ii. + realistic

iii. - truth not known

iv. - need more resources

c. QA can use  phantoms (test objects)

i. + less resources

ii. + truth is known

iii. – poor stability – temperature  2-3%/oC

iv. – poor stability – chemical decay 

v. – often not realistic

d. Sources of random variation

i. Biological – normal variation (e.g. blood flow)

ii. Data collection (see ‘the measurement process’)
1. subject positioning (head in coil, slices in head)

2. which radiographer? (technologist)
3. pre-scan procedure

4. Gd  injection procedure

5. subject movement (macroscopic)

6. subject movement (cardiac, CSF,  breathing)

7. image noise

iii. Image analysis

1. ROI placement

2. segmentation 

3. within-observer and between-observer effects

a. training (set of rules)

b. observation conditions

c. psychological state (the maternity syndrome) 

d. (none with automatic system)
e. Why does random instrumental error matter?

i. If it is comparable with the biological effects being measured, it can make a study result negative

ii. In a cross-sectional study, it should be << natural within-group variance

1. ‘No difference was found, contrary to the findings by other groups’
iii. In a serial study it should be << biological within-subject change over time

1. ‘there was no significant change over a period of one year’ 

f. Measurement of random error

i. Bland-Altman: 
1. pairs of repeated measurements
2. give sd of a single measurement 
3. and 95% confidence limits in a single measurement
ii. Intra-class Correlation Coefficient (ICC) (=reliability)

1. = (variance between subjects) / (var between + var within)

2. typically 0.9 

3. shows fraction of measured variance that comes from within-group differences (as opposed to instrument)

4. sets instrumental random error in context  BUT

5. depends on subject group (e.g. good for patients, bad for controls)
g. Sources of  systematic error

i. Biological – hope controls are stable

ii. Data collection

1. B1 error (including nonuniformity)

2. slice profile, partial volume
3. operator training

4. hardware/software upgrade
iii. Image analysis
1. observer training

2. software upgrades

h. does systematic error matter?

i. In short-term single-centre study – NO

ii. In multi-centre studies – YES

iii. In long studies – PROBABLY 

1. systematic error (if present, and not understood) can vary with centre and with time.

iv. Example of how medium term changes in systematic error wrecked a long-term study  (fictitious)

1. figure  (from qMR book1)
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re 187, Partly normalized and fully normalized MTR. histograms. The partly normalized histograms were
calculated by dividing each absolute histogram value by the sum of the values (without taking account of bin widih):
they have a peak height tha is dependent on the bin width (in fact inversely proportional to ). The fully Rormalized
histograms were calculated taking account of bin width [Equation (18.4); they are independent of bin width, with a
peak height of about 10 % vol/pu, a peak widih (full-width half-maximum) of 10 pu, and an area of 100% vl





Figure 3.5. Long-term precision is dominated by instability in the systematic error. Simulation of fictional change in

measurement error over time, during a longitudinal study. Short-term precision is good, and a study completed in the

first 3 years is unaffected by the large systematic error (i.e. poor accuracy). A major upgrade at year 3 dramatically

changes the systematic error. A subtle drift in values takes place, followed by two more step changes, at the times

of operator change and a minor upgrade. At year 8 the sources of systematic error are finally identified and removed,

giving a system that should provide good accuracy and hence long-term precision for many years
2. A realistic phantom for MS lesions (OCCA) showed large errors in estimated volume, dependent on the observer and the lesion contrast.
3. Understanding inaccuracy is good MR physics!
i. Understanding random error

i. It’s often assumed that image noise determines this; however not so (?).

ii. By identifying and measuring sources of random error, we can refine the measurement process, optimise parameters (e.g. TR, NEX), minimise random error for a given examination time.

j. Phantoms exist for many MR quantities (but not all)

i. Volume – easy – geometric objects, Perspex and water

ii. T1 T2 – doped agarose gels. Ni T1 is temperature independent 
iii. ADC – alkanes (although T1 T2 too long)

iv. DTI – hard. Need bundles of small fibres.

v. MT – BSA

vi. Temperature control and monitoring possible to 0.2oC

6. Summary

a. By being aware of all stages in the measurement process, and where sources of variation and error can be present, the quality of the results from quantitative image analysis is improved. As a result studies are more likely to give meaningful and useful results.
b. Some principles:

i. Understand systematic error in data collection, especially RF nonuniformity

ii. Place ROI’s carefully

iii. Understand statistics

iv. Use QA in phantoms and controls
v. Understand and minimise sources of random error in data collection and image analysis
7. Additional material:

1. The material in this presentation is based on chapters 1-4 in the book Quantitative MRI of the Brain.
2. The website qmri.org contains additional material on qMR, and will include an up-to-date version of this presentation.

3. Other helpful books are listed in2, and include the comprehensive book by Haacke et al5
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